Difference between revisions of "Austin SAG model"
m |
(→Model Form) |
||
Line 20: | Line 20: | ||
* ''ρ<sub>X</sub>'' is the density of component ''X'', t/m<sup>3</sup> |
* ''ρ<sub>X</sub>'' is the density of component ''X'', t/m<sup>3</sup> |
||
* ''φ<sub>C</sub>'' is the mill speed as a fraction of critical (eg. 0.75 for 75% of critical) |
* ''φ<sub>C</sub>'' is the mill speed as a fraction of critical (eg. 0.75 for 75% of critical) |
||
+ | |||
+ | === Mill cone angles === |
||
+ | The model supports flat-ended mills (cone angle of 0°) or a cone angle of 15°. Any other value entered for the cone angle will be treated as 15°. |
||
To account for cone ends of mills, an allowance of 5% is used <sup>[[Bibliography:_Mill_power_draw_models|Doll, 2013]]</sup> instead of the formula proposed by Austin. |
To account for cone ends of mills, an allowance of 5% is used <sup>[[Bibliography:_Mill_power_draw_models|Doll, 2013]]</sup> instead of the formula proposed by Austin. |
Revision as of 17:57, 19 April 2015
History
The SAG mill model by proposed by Leonard Austin (1990) was largely based on modifications of earlier tumbling mill models by Hogg & Fuerstenau and F. Bond. The model uses a kinetic-potential energy balance to describe the power draw of a mill charge. Many geometric components of the earlier models were fit to empirical relationships measured by Austin.
Model Form
The power draw model for a SAG mill cylinder of the following form:
Where:
- P is the power evolved at the mill shell, kW
- K and A are empirical fitting factors (use 10.6 and 1.03, respectively)
- D is the mill effective diameter (inside the effective liner thickness), m
- L is the mill effective grinding length (also referred to as the 'belly length), m
- Jtotal is the mill total volumetric filling as a fraction (eg. 0.30 for 30%)
- εB is the porosity of the rock and ball load (use 0.3)
- wC is the charge %solids, fraction by weight (use 0.80 Doll, 2013)
- Jballs is the mill volumetric filling of balls as a fraction (eg. 0.10 for 10%)
- ρX is the density of component X, t/m3
- φC is the mill speed as a fraction of critical (eg. 0.75 for 75% of critical)
Mill cone angles
The model supports flat-ended mills (cone angle of 0°) or a cone angle of 15°. Any other value entered for the cone angle will be treated as 15°.
To account for cone ends of mills, an allowance of 5% is used Doll, 2013 instead of the formula proposed by Austin.