Difference between revisions of "Austin SAG model"

From SAGMILLING.COM
Jump to: navigation, search
(Created page with "==Austin SAG model== The SAG mill model by proposed by Leonard Austin (1990) was largely based on modifications of earlier tumbling mi...")
 
(Austin SAG model)
Line 1: Line 1:
  +
==History==
==Austin SAG model==
 
The SAG mill model by proposed by [[Bibliography:_Mill_power_draw_models|Leonard Austin (1990)]] was largely based on modifications of earlier tumbling mill models by Hogg & Fuerstenau and F. Bond. The model uses a kinetic-potential energy balance to describe the power draw of a mill charge. Many geometric components of the model were fit to empirical relationships measured by Austin, resulting in a model for the mill cylinder of the following form:
+
The SAG mill model by proposed by [[Bibliography:_Mill_power_draw_models|Leonard Austin (1990)]] was largely based on modifications of earlier tumbling mill models by Hogg & Fuerstenau and F. Bond. The model uses a kinetic-potential energy balance to describe the power draw of a mill charge. Many geometric components of the earlier models were fit to empirical relationships measured by Austin.
  +
  +
==Model Form==
  +
The power draw model for a SAG mill cylinder of the following form:
   
 
<math>P = K D^{2.5} L ( 1 - AJ_{total}) \left [ (1-\epsilon_{B}) \left( \frac{\rho_{solids}}{w_{C}} \right ) J_{total} + 0.6 J_{balls} \left( \rho_{balls} - \frac{\rho_{solids}}{w_C} \right) \right ] \phi_{C} \left( 1 - \frac{0.1}{2^{9-10\phi_C}} \right)</math>
 
<math>P = K D^{2.5} L ( 1 - AJ_{total}) \left [ (1-\epsilon_{B}) \left( \frac{\rho_{solids}}{w_{C}} \right ) J_{total} + 0.6 J_{balls} \left( \rho_{balls} - \frac{\rho_{solids}}{w_C} \right) \right ] \phi_{C} \left( 1 - \frac{0.1}{2^{9-10\phi_C}} \right)</math>

Revision as of 01:13, 5 December 2013

History

The SAG mill model by proposed by Leonard Austin (1990) was largely based on modifications of earlier tumbling mill models by Hogg & Fuerstenau and F. Bond. The model uses a kinetic-potential energy balance to describe the power draw of a mill charge. Many geometric components of the earlier models were fit to empirical relationships measured by Austin.

Model Form

The power draw model for a SAG mill cylinder of the following form:

P = K D^{2.5} L ( 1 - AJ_{total}) \left [ (1-\epsilon_{B}) \left( \frac{\rho_{solids}}{w_{C}} \right ) J_{total} + 0.6 J_{balls} \left( \rho_{balls} - \frac{\rho_{solids}}{w_C} \right)  \right ] \phi_{C} \left( 1 - \frac{0.1}{2^{9-10\phi_C}} \right)

Where:

  • P is the power evolved at the mill shell, kW
  • K and A are empirical fitting factors (use 10.6 and 1.03, respectively)
  • D is the mill effective diameter (inside the effective liner thickness), m
  • L is the mill effective grinding length (also referred to as the 'belly length), m
  • Jtotal is the mill total volumetric filling as a fraction (eg. 0.30 for 30%)
  • εB is the rosity of the rock and ball load (use 0.3)
  • wC is the charge %solids, fraction by weight (use 0.80 Doll, 2013)
  • Jballs is the mill volumetric filling of balls as a fraction (eg. 0.10 for 10%)
  • ρX is the density of component X, t/m3
  • φC is the mill speed as a fraction of critical (eg. 0.75 for 75% of critical)

To account for cone ends of mills, an allowance of 5% is used Doll, 2013 instead of the formula proposed by Austin.