Difference between revisions of "Benchmarking: Amelunxen SGI - Agnico Eagle"

From SAGMILLING.COM
Jump to: navigation, search
(Design Criteria)
(Results)
 
(11 intermediate revisions by one other user not shown)
Line 7: Line 7:
 
Survey conducted shortly after start-up
 
Survey conducted shortly after start-up
   
==Design Criteria==
 
 
Actual operating data, table 7 from the reference
 
Actual operating data, table 7 from the reference
  +
* Throughput = 210 dry tonnes per hour
 
* SAG circuit F<sub>80</sub> = 100 mm
 
* SAG circuit F<sub>80</sub> = 100 mm
 
* transfer T<sub>80</sub> = 244 &micro;m
 
* transfer T<sub>80</sub> = 244 &micro;m
Line 16: Line 16:
 
* SAG mill discharge % solids = 84% weight
 
* SAG mill discharge % solids = 84% weight
 
* SAG mill speed 8.59 RPM (53.4% of critical)
 
* SAG mill speed 8.59 RPM (53.4% of critical)
  +
* E<sub>SAG</sub> at mill shell = 1283/210 = 6.11 kWh/t
 
(to achieve DCS power of 1350 kW requires 14% vol mill load)
 
(to achieve DCS power of 1350 kW requires 14% vol mill load)
* ball mill power draw (sum of 2 mills, at motor input) = 1422 kW (at mill shell = 2 &times; 673 kW = 1346 kW)
+
* ball mill power draw (sum of 2 mills, at motor input) = 1422 kW (at mill shell = 2 &times; 674 kW = 1348 kW)
 
* ball mill % solids = 83% weight
 
* ball mill % solids = 83% weight
(to achieve 1422 kW, assume 30% vol mill charge, 17 RPM)
+
(to achieve 1424 kW, assume 30% vol mill charge, 17 RPM)
  +
* E<sub>bm</sub> at mill shell = 1348/210 = 6.41 kWh/t
  +
* ball mill operating Wi<sub>O</sub> relative to motor input = 13.0 kWh/t (= 13.7 kWh/t relative to mill shell)
   
Design criteria
+
==Design Criteria==
* SGI (actually SPI&tm;) of ore (Oct 1, 2000 to - April 30,2001); assumed to be the 25<sup>th</sup> percentile = 24 minutes.
+
* SGI (actually SPI™) of ore (Oct 1, 2000 to - April 30,2001); assumed to be the 25<sup>th</sup> percentile = 24 minutes.
 
* Wi<sub>BM</sub> assumed to be 10 kWh/tonne.
 
* Wi<sub>BM</sub> assumed to be 10 kWh/tonne.
 
* Plant availability = 94.4%
 
* Plant availability = 94.4%
Line 36: Line 39:
 
==Modelling==
 
==Modelling==
   
  +
The Amelunxen SGI model for SAB circuit is used.
The Bond/Barratt SABC-B model is used with the default 10% E<sub>ssbm</sub> calibration factor.
 
* circuit F<sub>80</sub> = 132 mm
+
* circuit F<sub>80</sub> = 100 mm
* circuit P<sub>80</sub> = 180 &micro;m
+
* circuit P<sub>80</sub> = 74 &micro;m
* The average ball mill work index given as 16 kWh/short ton = 17.6 kWh/tonne
 
* The relationship between A&times;b and Wi<sub>RM</sub> for Andean copper porphyries can be used to determine the following rod mill work index values.
 
** A&times;b of Esperanza ore; avg= 39; becomes Wi<sub>RM</sub>=14.5 kWh/tonne
 
* No crushing work index is given. Assume a value of 12 kWh/tonne (slightly higher than typical porphyry)
 
* No ore density is given. Assume similar to Los Bronces, density=2.64 t/m³
 
   
 
SAG mill is modelled using following:
 
SAG mill is modelled using following:
* Austin model
+
* full Morrell SAG grate C-model
* assume ore density 2.64 t/m³, same as Los Bronces
+
* assume ore density 2.7 t/m³
  +
* effective dimensions 6882 mm diam × 3657 mm EGL
* nominal diameter 40 foot, effective grinding length 26 foot (deduct 2 ft from cylinder length)
 
* assume 6 inch liner effective thickness, mill speed 75% of critical
 
* ball charge 16% v/v; total filling 26% v/v gives the desired 92.4% utilization of motor power
 
   
 
Ball mill is modelled using following:
 
Ball mill is modelled using following:
* Nordberg wet overflow model
+
* full Morrell ball mill wet overflow C-model
* assume ore density 2.64 t/m³, same as Los Bronces
+
* assume ore density 2.7 t/m³
  +
* effective dimensions 3186 mm diam × 5181 mm EGL
* nominal diameter 27 foot, effective grinding length 44.5 foot (deduct 6 inches from cylinder length)
 
* assume 6 inch liner effective thickness, mill speed 75% of critical
 
* total filling 30% v/v gives the desired 95% utilization of motor power
 
   
  +
The model defaults are used for:
== Results ==
 
  +
* CF<sub>SAG</sub> = 1.0 (normal feed size, no pebble crushing)
  +
* CF<sub>ball</sub> = 1.10 (relationship for Los Bronces in Amelunxen et al, 2013)
   
  +
== Results ==
  +
[[file:Benchmarking-AgnicoEagle.png|thumb|right| Screenshot of Agnico Eagle circuit]]
 
Result for default Amelunxen SGI SAB model conditions:
 
Result for default Amelunxen SGI SAB model conditions:
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
Line 72: Line 70:
 
|-
 
|-
 
| Predicted
 
| Predicted
|
+
| 6.5
  +
| -
  +
| 6.9
  +
| 13.4
  +
| 196
  +
|-
  +
| Survey
  +
| 6.1
  +
| -
  +
| 6.4
  +
| 12.5
  +
| 210
  +
|-
  +
| Difference
  +
| 0.4
  +
| -
  +
| 0.5
  +
| 0.9
  +
| 14
  +
|-
  +
| Difference
  +
| model 7% high
  +
| -
  +
| model 8% high
  +
| model 7% high
  +
| model 7% low
  +
|}
  +
  +
==Discussion==
  +
The calibration factor for SAG milling, CF<sub>SAG</sub>, is given in Amelunxen et al (2013) as:
  +
* 1.00 for "normal feed size with no pebble crushing",
  +
* 0.90 for "fine SAG feed"
  +
* 0.85 for "pebble crushing"
  +
* 0.77 for both "fine SAG feed" and "pebble crushing"
  +
  +
Back-calculating the CF<sub>SAG</sub> for Laronde ore gives 0.94, mid-way between "normal" and "fine" in the list above. Amelunxen et al (2013) do not actually reveal what the basis is for determining if an ore is "fine", but 100 mm could be on the cusp of being fine or coarse. In reality, the CF<sub>SAG</sub> factor should be a continuous and smooth function of feed size and not a step-change.
  +
  +
The Starkey et al (2001) reference does not give a suitable range of ball mill work index values suitable for determining a 25<sup>th</sup> percentile. The operating work index is given as 12.3 kWh/t (13.0 kWh/t motor input basis). Back-calculating a CF<sub>ball</sub> value is not really possible with the data provided.
  +
  +
  +
If the model is run with a manual CF<sub>SAG</sub> = 0.95, the following results are returned:
  +
  +
Result for Amelunxen SGI SAB model with CF<sub>SAG</sub> = 0.95
  +
{| class="wikitable" border="1"
  +
|-
  +
!
  +
!Esag
  +
!Epeb
  +
!Ebm
  +
!Etotal
  +
!t/h
  +
|-
  +
| Predicted
  +
| 6.4
 
| -
 
| -
|
+
| 6.8
|
+
| 13.2
|
+
| 199
 
|-
 
|-
 
| Survey
 
| Survey
|
+
| 6.1
 
| -
 
| -
|
+
| 6.4
|
+
| 12.5
|
+
| 210
 
|-
 
|-
 
| Difference
 
| Difference
|
+
| 0.3
 
| -
 
| -
|
+
| 0.4
|
+
| 0.7
|
+
| 11
 
|-
 
|-
 
| Difference
 
| Difference
  +
| model 4.9% high
|
 
 
| -
 
| -
  +
| model 6.3% high
|
 
  +
| model 5.6% high
|
 
  +
| model 5.5% low
|
 
 
|}
 
|}

Latest revision as of 19:04, 22 May 2020

Benchmarking: Amelunxen SGI Specific Energy Consumption - Agnico Eagle Laronde

Starkey, J., Robitaille, J., Cousin, P., Jordan, J. and Kosick, G., Design of the Agnico-Eagle Laronde Division SAG mill. Proceedings of SAG 2001, pages III-165 to III-178.

Survey conducted shortly after start-up

Actual operating data, table 7 from the reference

  • Throughput = 210 dry tonnes per hour
  • SAG circuit F80 = 100 mm
  • transfer T80 = 244 µm
  • circuit P80 = 74 µm
  • SAG power draw (at motor input) = 1350 kW (at mill shell = 1283 kW)
  • SAG mill ball charge = 10.6 % vol
  • SAG mill discharge % solids = 84% weight
  • SAG mill speed 8.59 RPM (53.4% of critical)
  • ESAG at mill shell = 1283/210 = 6.11 kWh/t

(to achieve DCS power of 1350 kW requires 14% vol mill load)

  • ball mill power draw (sum of 2 mills, at motor input) = 1422 kW (at mill shell = 2 × 674 kW = 1348 kW)
  • ball mill % solids = 83% weight

(to achieve 1424 kW, assume 30% vol mill charge, 17 RPM)

  • Ebm at mill shell = 1348/210 = 6.41 kWh/t
  • ball mill operating WiO relative to motor input = 13.0 kWh/t (= 13.7 kWh/t relative to mill shell)

Design Criteria

  • SGI (actually SPI™) of ore (Oct 1, 2000 to - April 30,2001); assumed to be the 25th percentile = 24 minutes.
  • WiBM assumed to be 10 kWh/tonne.
  • Plant availability = 94.4%

Mill criteria

  • SAG mill: 24 foot nom diam by 12 foot effective grinding length (EGL)
  • ball mill: two 11 foot nom diam by 17 foot (assumed to be EGL)
  • SAG mill single variable speed motor 4500 HP
  • Ball mill single fixed speed motors 1000 HP (each mill)
  • assume rubber liners in SAG, nominal 8½ inch liner thickness
  • assume steel liners in ball mills, nominal 3¼ inch liner thickness

Modelling

The Amelunxen SGI model for SAB circuit is used.

  • circuit F80 = 100 mm
  • circuit P80 = 74 µm

SAG mill is modelled using following:

  • full Morrell SAG grate C-model
  • assume ore density 2.7 t/m³
  • effective dimensions 6882 mm diam × 3657 mm EGL

Ball mill is modelled using following:

  • full Morrell ball mill wet overflow C-model
  • assume ore density 2.7 t/m³
  • effective dimensions 3186 mm diam × 5181 mm EGL

The model defaults are used for:

  • CFSAG = 1.0 (normal feed size, no pebble crushing)
  • CFball = 1.10 (relationship for Los Bronces in Amelunxen et al, 2013)

Results

Screenshot of Agnico Eagle circuit

Result for default Amelunxen SGI SAB model conditions:

Esag Epeb Ebm Etotal t/h
Predicted 6.5 - 6.9 13.4 196
Survey 6.1 - 6.4 12.5 210
Difference 0.4 - 0.5 0.9 14
Difference model 7% high - model 8% high model 7% high model 7% low

Discussion

The calibration factor for SAG milling, CFSAG, is given in Amelunxen et al (2013) as:

  • 1.00 for "normal feed size with no pebble crushing",
  • 0.90 for "fine SAG feed"
  • 0.85 for "pebble crushing"
  • 0.77 for both "fine SAG feed" and "pebble crushing"

Back-calculating the CFSAG for Laronde ore gives 0.94, mid-way between "normal" and "fine" in the list above. Amelunxen et al (2013) do not actually reveal what the basis is for determining if an ore is "fine", but 100 mm could be on the cusp of being fine or coarse. In reality, the CFSAG factor should be a continuous and smooth function of feed size and not a step-change.

The Starkey et al (2001) reference does not give a suitable range of ball mill work index values suitable for determining a 25th percentile. The operating work index is given as 12.3 kWh/t (13.0 kWh/t motor input basis). Back-calculating a CFball value is not really possible with the data provided.


If the model is run with a manual CFSAG = 0.95, the following results are returned:

Result for Amelunxen SGI SAB model with CFSAG = 0.95

Esag Epeb Ebm Etotal t/h
Predicted 6.4 - 6.8 13.2 199
Survey 6.1 - 6.4 12.5 210
Difference 0.3 - 0.4 0.7 11
Difference model 4.9% high - model 6.3% high model 5.6% high model 5.5% low