Difference between revisions of "Bibliography: Specific energy consumption models"

From SAGMILLING.COM
Jump to: navigation, search
(SMC Model Bibliography)
Line 15: Line 15:
 
# ''Morell, Stephen'', '''An alternative energy—size relationship to that proposed by Bond for the design and optmisation of grinding circuits''', International Journal of Mineral Processing, Vol 74 (2004), Pages 133 - 141
 
# ''Morell, Stephen'', '''An alternative energy—size relationship to that proposed by Bond for the design and optmisation of grinding circuits''', International Journal of Mineral Processing, Vol 74 (2004), Pages 133 - 141
 
# ''smctesting.com'', '''Using the SMC® Test to Predict Comminution Circuit Performance''', Published to the Internet [[http://www.smctesting.com/about]]
 
# ''smctesting.com'', '''Using the SMC® Test to Predict Comminution Circuit Performance''', Published to the Internet [[http://www.smctesting.com/about]]
  +
  +
=== Starkey SAGDesign Model Bibliography ===
  +
# ''Starkey, John H; Meadows, David; Senchenko, Arkady; &amp; Thompson, Phillip'', '''SAGDesign Testing Review - Case Studies''', 24<sup>th</sup> International Mineral Processing Conference, Bejing 2008, [[http://sagdesign.com/home/publications]]
   
 
=== Bibliography of Other Useful Documents ===
 
=== Bibliography of Other Useful Documents ===
# '' Hukki, R. T.'', '''Proposal for a Solomonic Settlement Between the Theories of Von Rittinger, Kick and Bond''', Transactions AIME, Vol 223, 1962, Pages 403 - 408 [[http://www.onemine.org/search/summary.cfm/Minerals-Beneficiation--Proposal-for-a-Solomonic-Settlement-Between-the-Theories-of-von-Rittinger-Kick-and-Bond?d=A99895D9FE34D3C9A0CD3EE0354AC37E1C182353BD8D607F1360FC8901D8DBE524161]]
+
# ''Hukki, R. T.'', '''Proposal for a Solomonic Settlement Between the Theories of Von Rittinger, Kick and Bond''', Transactions AIME, Vol 223, 1962, Pages 403 - 408 [[http://www.onemine.org/search/summary.cfm/Minerals-Beneficiation--Proposal-for-a-Solomonic-Settlement-Between-the-Theories-of-von-Rittinger-Kick-and-Bond?d=A99895D9FE34D3C9A0CD3EE0354AC37E1C182353BD8D607F1360FC8901D8DBE524161]]

Revision as of 05:43, 30 October 2012

Bibliography: Specific Energy Consumption Models

Specific Energy Consumption is the most common way of describing how much energy is used by grinding, and is the basis of the throughput estimations in SAGMILLING.COM. It is usually expressed as kWh/t (kilowatt-hours per tonne).

Models of this type assume a standard particle size distribution and use a single position on that particle size distribution to characterize the entire curve. The most common way to express this is the 80% passing size, which can be expressed as F80 (feed stream 80% passing size), P80 (product stream 80% passing size), or K80 (generic stream 80% passing size.

Bond/Barratt Model Bibliography

  1. Bond, Fred C, The Third Theory, Transactions AIME, May 1952, Pages 484 - 494 [[1]]
  2. Rowland, Chester A, Bond's Method for Selection of Ball Mills, Advances in Comminution, ed. S. K. Kawatra, SME 2006, Pages 385 - 397
  3. Barratt, Derek J, Semi-autogenous grinding: a comparison with the conventional route, CIM Bulletin, Nov 1979, Pages 74 - 80. [[2]]
  4. Barratt, Derek J, An Update on Testing, Scale-up and Sizing Equipment for Autogenous and Semi-autogenous Grinding Circuits, Proceedings of the SAG 1989 Conference, Vancouver, Canada, Pages 25 - 46,

SMC Model Bibliography

  1. Morell, Stephen, An alternative energy—size relationship to that proposed by Bond for the design and optmisation of grinding circuits, International Journal of Mineral Processing, Vol 74 (2004), Pages 133 - 141
  2. smctesting.com, Using the SMC® Test to Predict Comminution Circuit Performance, Published to the Internet [[3]]

Starkey SAGDesign Model Bibliography

  1. Starkey, John H; Meadows, David; Senchenko, Arkady; & Thompson, Phillip, SAGDesign Testing Review - Case Studies, 24th International Mineral Processing Conference, Bejing 2008, [[4]]

Bibliography of Other Useful Documents

  1. Hukki, R. T., Proposal for a Solomonic Settlement Between the Theories of Von Rittinger, Kick and Bond, Transactions AIME, Vol 223, 1962, Pages 403 - 408 [[5]]